用于训练机器学习(ML)模型的标签至关重要。通常,对于ML分类任务,数据集包含硬标签,但已证明使用软标签的学习可以产生模型概括,鲁棒性和校准的好处。较早的工作发现从多个注释者的硬标签形成软标签方面的成功;但是,这种方法可能不会融合到最佳标签,因此需要许多注释者,这可能是昂贵且效率低下的。我们专注于有效地从单个注释者那里引起软标签。我们通过众包研究($ n = 242 $)收集并发布了CIFAR-10的软标签数据集。我们证明,使用标签学习可以实现可比的模型性能与先前的方法,同时需要更少的注释者。因此,我们的启发方法表明,有望使从业者能够通过更少的注释来享受改善模型性能和可靠性的好处,并为将来的数据集策展人提供指南,以了解从单个注释者那里利用更丰富信息(例如分类不确定性)的好处。
translated by 谷歌翻译
深度神经网络已广泛用于学习数据集的潜在结构,跨图像,形状和音频信号等模态。然而,现有模型通常是依赖的方式,需要自定义架构和目标来处理不同类别的信号。我们利用神经字段以典型的方式捕获图像,形状,音频和跨模型视听域中的底层结构。我们将任务作为学习歧管之一,我们的目标是推断我们的数据所在的低维,本地线性子空间。通过实施歧管,局部线性和局部等距的覆盖范围,我们的模型 - 被称为宝石 - 学会捕获跨模式的数据集的基础结构。然后,我们可以沿着我们歧管的线性区域旅行,以获得样品之间的感知一致的插值,并且可以进一步使用GEM在我们的歧管上恢复点,而不是不同的输入图像的完成,而是音频或图像信号的跨模式幻觉。最后,我们表明,通过走过宝石的底层歧管,我们可能会在信号域中生成新的样本。代码和其他结果可在https://yilundu.github.io/gem/获得。
translated by 谷歌翻译
Recent object detection models for infrared (IR) imagery are based upon deep neural networks (DNNs) and require large amounts of labeled training imagery. However, publicly-available datasets that can be used for such training are limited in their size and diversity. To address this problem, we explore cross-modal style transfer (CMST) to leverage large and diverse color imagery datasets so that they can be used to train DNN-based IR image based object detectors. We evaluate six contemporary stylization methods on four publicly-available IR datasets - the first comparison of its kind - and find that CMST is highly effective for DNN-based detectors. Surprisingly, we find that existing data-driven methods are outperformed by a simple grayscale stylization (an average of the color channels). Our analysis reveals that existing data-driven methods are either too simplistic or introduce significant artifacts into the imagery. To overcome these limitations, we propose meta-learning style transfer (MLST), which learns a stylization by composing and tuning well-behaved analytic functions. We find that MLST leads to more complex stylizations without introducing significant image artifacts and achieves the best overall detector performance on our benchmark datasets.
translated by 谷歌翻译
近年来,合成(或模拟)数据用于培训机器学习模型已迅速增长。通常,合成数据可以比其现实世界中的对应物更快,更便宜。但是,使用合成图像的一个挑战是场景设计:例如,内容及其特征和空间布置的选择。为了有效,该设计不仅必须现实,而且适合目标域,而目标域(通过假设)是未标记的。在这项工作中,我们提出了一种方法,可以自动根据未标记的现实世界图像选择合成图像的设计。我们的方法被称为神经 - 异位元模拟(NAM),建立在开创性的元模拟方法上。与当前的最新方法相反,我们的方法可以在离线后进行预训练,然后为新目标图像提供快速的设计推断。使用合成和现实世界中的问题,我们表明,NAMS不符合符合内域和室外目标成像的合成设计,并且具有NAMS设计的图像的训练分割模型与NA \ \ na \'相比,结果均优异。 IVE随机设计和最先进的元模拟方法。
translated by 谷歌翻译
通用数据模型解决了标准化电子健康记录(EHR)数据的许多挑战,但无法将其集成深度表型所需的资源。开放的生物学和生物医学本体论(OBO)铸造本体论提供了可用于生物学知识的语义计算表示,并能够整合多种生物医学数据。但是,将EHR数据映射到OBO Foundry本体论需要大量的手动策展和域专业知识。我们介绍了一个框架,用于将观察性医学成果合作伙伴关系(OMOP)标准词汇介绍给OBO铸造本体。使用此框架,我们制作了92,367条条件,8,615种药物成分和10,673个测量结果的映射。域专家验证了映射准确性,并且在24家医院进行检查时,映射覆盖了99%的条件和药物成分和68%的测量结果。最后,我们证明OMOP2OBO映射可以帮助系统地识别可能受益于基因检测的未诊断罕见病患者。
translated by 谷歌翻译
在本文中,我们介绍了基于差异驱动器快照机器人和模拟的用户研究的基于倾斜的控制的实现,目的是将相同的功能带入真正的远程介绍机器人。参与者使用平衡板来控制机器人,并通过头部安装的显示器查看了虚拟环境。使用平衡板作为控制装置的主要动机源于虚拟现实(VR)疾病;即使是您自己的身体与屏幕上看到的动作相匹配的小动作也降低了视力和前庭器官之间的感觉冲突,这是大多数关于VR疾病发作的理论的核心。为了检验平衡委员会作为控制方法的假设比使用操纵杆要少可恶意,我们设计了一个用户研究(n = 32,15名女性),参与者在虚拟环境中驾驶模拟差异驱动器机器人, Nintendo Wii平衡板或操纵杆。但是,我们的预注册的主要假设不得到支持。操纵杆并没有使参与者引起更多的VR疾病,而委员会在统计学上的主观和客观性上都更加难以使用。分析开放式问题表明这些结果可能是有联系的,这意味着使用的困难似乎会影响疾病。即使在测试之前的无限训练时间也没有像熟悉的操纵杆那样容易使用。因此,使董事会更易于使用是启用其潜力的关键。我们为这个目标提供了一些可能性。
translated by 谷歌翻译
这项研究采用无限脉冲响应(IIR)图神经网络(GNN),有效地对智能网格数据的固有图形网络结构进行建模,以解决网络攻击本地化问题。首先,我们通过数值分析有限脉冲响应(FIR)和IIR图过滤器(GFS)的经验频率响应,以近似理想的光谱响应。我们表明,对于相同的滤波器顺序,IIR GF可以更好地近似所需的光谱响应,并且由于其合理类型的滤镜响应,它们也与较低阶GF的近似值相同。其次,我们提出了一个IIR GNN模型,以有效预测总线上的网络攻击的存在。最后,我们在样本(SW)和BUS(BW)水平的各种网络攻击下评估了模型,并将结果与​​现有架构进行比较。经过实验验证的是,所提出的模型的表现分别优于最先进的FIR GNN模型,分别在SW和BW定位方面分别优于9.2%和14%。
translated by 谷歌翻译
机器学习和认知科学的最新工作表明,了解因果信息对于智力的发展至关重要。使用``Blicket otter''环境的认知科学的广泛文献表明,孩子们擅长多种因果推理和学习。我们建议将该环境适应机器​​学习代理。当前机器学习算法的关键挑战之一是建模和理解因果关系:关于因果关系集的可转移抽象假设。相比之下,即使是幼儿也会自发学习和使用因果关系。在这项工作中,我们提出了一个新的基准 - 一种灵活的环境,可以评估可变因果溢出物下的现有技术 - 并证明许多现有的最新方法在这种环境中概括了困难。该基准的代码和资源可在https://github.com/cannylab/casual_overhypothess上获得。
translated by 谷歌翻译
自动生物医学图像分析的领域至关重要地取决于算法验证的可靠和有意义的性能指标。但是,当前的度量使用通常是不明智的,并且不能反映基本的域名。在这里,我们提出了一个全面的框架,该框架指导研究人员以问题意识的方式选择绩效指标。具体而言,我们专注于生物医学图像分析问题,这些问题可以解释为图像,对象或像素级别的分类任务。该框架首先编译域兴趣 - 目标结构 - ,数据集和算法与输出问题相关的属性的属性与问题指纹相关,同时还将其映射到适当的问题类别,即图像级分类,语义分段,实例,实例细分或对象检测。然后,它指导用户选择和应用一组适当的验证指标的过程,同时使他们意识到与个人选择相关的潜在陷阱。在本文中,我们描述了指标重新加载推荐框架的当前状态,目的是从图像分析社区获得建设性的反馈。当前版本是在由60多个图像分析专家的国际联盟中开发的,将在社区驱动的优化之后公开作为用户友好的工具包提供。
translated by 谷歌翻译
大型语言模型已被证明可以使用少量学习来实现各种自然语言任务的出色表现,这大大减少了将模型调整到特定应用程序所需的特定任务培训示例的数量。为了进一步了解量表对少量学习的影响,我们培训了一个5400亿个参数,密集激活的变压器语言模型,我们称之为“途径”语言模型棕榈。我们使用Pathways在6144 TPU V4芯片上训练了Palm,这是一种新的ML系统,可在多个TPU POD上进行高效的训练。我们通过在数百种语言理解和产生基准的基准方面实现最先进的学习结果来证明扩展的持续好处。在这些任务中,Palm 540B实现了突破性的表现,在一系列多步推理任务上表现出色,超过了最新的最新表现,并且在最近发布的Big Benchmark上表现优于平均人类表现。大量的大型基础任务显示出与模型量表的不连续改进,这意味着当我们扩展到最大模型时,性能急剧增加。 Palm在多语言任务和源代码生成方面也具有很强的功能,我们在各种基准测试中证明了这一点。我们还提供了有关偏见和毒性的全面分析,并研究了训练数据记忆的程度,相对于模型量表。最后,我们讨论与大语言模型有关的道德考虑,并讨论潜在的缓解策略。
translated by 谷歌翻译